LangkahPertama yaitu menghubungkan Resistor 390K Ohm secara palarel dengan Capasitor 680nF/450VAC. Langkah ke Dua yaitu dari ke empat dioda IN4007 dua dioda diseri dan dua dioda lagi diseri kemudian kedua dioda yang sudah di seri dihubungkan palarel. Kalau bingung lihat video yang pernah saya posting Cara membuat lampu LED untuk rumah dengan
april16th, 2018 - pada rangkaian seri hambatan listrik atau resistor dihubungkan atau disusun secara berurutan satu maka kita dapat menggunakan teori rangkaian seri dan paralel di''perbedaan rangkaian seri dan paralel dalam ilmu 2018 - contoh soal rangkaian listrik seri empat buah hambatan masing masing besarnya 2 Ω 3 Ω 4 Ω
Hubunganseri tidak hanya terdiri dari dua atau tiga resistror saja yang dapat dihubungkan secara seri, tetapi rangkaian seri dimungkinkan terdiri dari empat buah resistor atau lebih. Gambar 1.3. Prinsip Hubungan Seri Resistor Kuat Arus hubungan Seri Menurut hukum Kirchhoff-II, jika rangkaian seri dengan tiga buah resistor (R) dihubungkan
Ohmmeterdapat dihubungkan secara seri atau paralel berdasarkan persyaratan (apakah resistansi yang diukur adalah bagian dari rangkaian atau merupakan resistansi shunt.) Mikro-ohmmeter (mikrohmmeter atau mikro ohmmeter) membuat pengukuran resistansi rendah. Megohmmeters (juga perangkat bermerek dagang Megger ) mengukur nilai resistansi yang besar.
reisitorR4 sebesar 1kΩ yang dihubungkan seri dengan beban. Pada rangakaian Gambar 3.5, resistor dihubungkan dengan resistor variabel. Resistor variabel tesebut digunakan untuk melihat kemampuan sumber arus konstan ketika nilai hambatan berubah. Rangakaian Pembagi Tegangan dapat dilihat pada gambar 3.8. Gambar 3.9 Diagram rangkaian Pembagi
Rangkaianlistrik seri disusun secara berderet, sedangkan rangkaian listrik paralel disusun secara bersusun atau bercabang. Contoh 2 - Soal Rangkaian Listrik Seri Paralel dan Campuran. Empat buah lampu disusun seperti gambar berikut. Urutan lampu yang menyala paling terang sampai ke yang paling redup adalah . A. L 1, L 3, L 2, L 4 B. L
Suaturesistor 20 disusun seri dengan suatu kapasitor. Rangkaian dihubungkan ke suatu tegangan sumber yang frekuensinya dapat berubah-ubah. Namun jika tegangan antara ujung-ujung resistor sama dengan tegangan antara ujung-ujung kapasitor, maka tentukanlah frekuensi sumber AC tersebut! Jawab:
Komponendan Fungsi Resistor (3K3 Ω , 22K Ω, 18K Ω , 10K Ω, dan 270 Ω) Fungsi: sebagai hambatan atau komponen yang akan diukur nilai hambatannya Dioda pemancar cahaya Fungsi: sebagai indikator adanya arus yang lewat atau masuk pada rangkaian 3.2. Prosedur Percobaan 3.2.1.
Adapunmodel-model resistor seperti tabel di bawah ini : Empat prinsip susunan seri hambatan listrik : Susunan seri bertujuan untuk memperbesar hambatan suatu rangkaian; Kuat arus yang melalui tiap hambatan sama, yaitu sama dengan kuat arus yang melalui hambatan pengganti serinya . Beberapa sumber tegangan dapat dihubungkan secara seri
Gambar12 contoh soal rangkaian seri perhatikan gambar 12 suatu rangkaian tahanan yang dihubungkan secara seri diketahui r1 2 ω r2 5 ω r3 3 ω dan tegangan sumber v 20 v maka. rangkaian rlc pararel simon patabang, mt. • setiap impedansi z yang diparalelkan dalam rangkaian ac mempunyai tegangan yg sama, baik besar, arah maupun fasenya. soal
4DQx1qV. Empat buah resistor masing-masing dengan hambatan 2 , 3 , 4 , dan 5 , disusun seri. Rangkaian tersebut dihubungkan dengan ggl 18 volt dan hambatan dalam 1,5 ohm. Hitunglah kuat arusnya! Pembahasan Diketahui Empat resistor disusun seri R1 = 2 R2 = 3 R3 = 4 R4 = 5 ε = 18 volt r = 1,5 Ditanya I = …. ? Dijawab Karena 4 resistor di rangkai seri maka Rs = R1 + R2 + R3 + R4 = 2 + 3 + 4 + 5 Rs = 14 Kuat arusnya bisa kita cari dengan menggunakan rumus berikut Jadi kuat arusnya adalah 1,16 ampere. - Jangan lupa komentar & sarannya Email nanangnurulhidayat
Resistor dikatakan terhubung secara seri ketika mereka dirangkai bersama dalam satu baris sehingga arus umum mengalir melalui mereka. Resistor individu dapat dihubungkan bersama baik dalam koneksi seri, koneksi paralel atau kombinasi seri dan paralel, untuk menghasilkan jaringan resistor yang lebih kompleks yang resistansi setara adalah kombinasi matematika dari masing-masing resistor yang terhubung bersama. Sebuah resistor bukan hanya komponen elektronik dasar yang dapat digunakan untuk mengubah tegangan menjadi arus atau arus menjadi tegangan, tetapi dengan menyesuaikan nilainya dengan benar, besar yang berbeda dapat ditempatkan pada arus yang dikonversi dan/atau tegangan yang memungkinkannya. untuk digunakan dalam rangkaian dan aplikasi referensi tegangan. Resistor dalam jaringan seri atau rumit dapat diganti dengan satu resistor ekuivalen tunggal, REQ atau impedansi, ZEQ dan tidak peduli apa kombinasi atau kompleksitas jaringan resistor, semua resistor mematuhi aturan dasar yang sama seperti yang didefinisikan oleh Hukum Ohm dan Hukum Rangkaian Kirchoff. Resistor Dalam Seri Resistor dikatakan terhubung dalam "Seri", ketika mereka dirangkai bersama dalam satu baris. Karena semua arus yang mengalir melalui resistor pertama tidak memiliki cara lain untuk pergi, ia juga harus melewati resistor kedua dan ketiga dan seterusnya. Kemudian, resistor dalam rangkaian seri memiliki Arus Bersama yang mengalir melalui mereka sebagai arus yang mengalir melalui satu resistor juga harus mengalir melalui yang lain karena hanya dapat mengambil satu jalur. Maka jumlah arus yang mengalir melalui serangkaian resistor dalam seri akan sama di semua titik dalam jaringan resistor seri. Sebagai contoh IR1 = IR2 = IR3 = IAB =1mA Dalam contoh berikut, resistor R1, R2 dan R3 semuanya dihubungkan bersama secara seri antara titik A dan B dengan arus yang sama, saya mengalir melalui mereka. Rangkaian Resistor dalam Seri Sebagai resistor dihubungkan bersama dalam seri berlalu saat yang sama melalui masing-masing resistor dalam rantai dan resistansi total, RT dari rangkaian harus sama dengan jumlah dari semua resistor individu ditambahkan bersama-sama. Itu adalah RT = R1 + R2 + R3 dan dengan mengambil nilai-nilai individual dari resistor dalam contoh sederhana kami di atas, total resistansi yang setara, maka REQ diberikan sebagai REQ = R1 + R2 + R3 = 1k + 2k + 6k = 9k Jadi kita melihat bahwa kita dapat mengganti ketiga resistor individual di atas hanya dengan satu resistor “setara” tunggal yang akan memiliki nilai 9k. Di mana empat, lima atau bahkan lebih resistor semua terhubung bersama dalam rangkaian seri, ekuivalen atau total resistansi dari rangkaian, RT akan tetap menjadi jumlah dari semua resistor individu yang terhubung bersama-sama dan resistor selanjutnya ditambahkan ke seri, lebih besar resistansi setara tidak peduli berapa nilainya. Resistansi total ini umumnya dikenal sebagai Resistansi Ekuivalen setara dan dapat didefinisikan sebagai; "Nilai resistansi tunggal yang dapat menggantikan sejumlah resistor secara seri tanpa mengubah nilai arus atau tegangan dalam rangkaian". Maka persamaan yang diberikan untuk menghitung resistansi total dari rangkaian saat menghubungkan bersama resistor secara seri diberikan sebagai Persamaan Resistor Seri RTotal = R1 + R2 + R3 +….. Rn dst. Perhatikan kemudian bahwa resistansi total atau setara, RT memiliki efek yang sama di rangkaian sebagai kombinasi asli dari resistor karena merupakan jumlah aljabar dari resistansi individu. Jika dua resistansi atau impedansi dalam seri adalah sama dan dari nilai yang sama, maka resistansi total atau setara, RT sama dengan dua kali nilai satu resistor. Itu sama dengan 2R dan untuk tiga resistor sama dalam seri, 3R, dll. Jika dua resistor atau impedansi seri tidak sama dan nilai-nilai yang berbeda, maka resistansi total atau setara, RT adalah sama dengan jumlah matematika dari dua resistansi. Itu sama dengan R1 + R2. Jika tiga atau lebih resistor yang tidak sama atau sama dihubungkan secara seri maka resistansi yang setara adalah R1 + R2 + R3 +…, dll. Satu poin penting untuk diingat tentang resistor di jaringan seri untuk memeriksa apakah matematika Anda benar. Resistansi Total RT dari dua atau lebih resistor yang dihubungkan bersama dalam seri akan selalu LEBIH BESAR dari nilai resistor terbesar dalam deretan. Dalam contoh kami di atas RT = 9k di mana sebagai nilai resistor terbesar hanya 6k. Tegangan Resistor Seri Tegangan di setiap resistor yang terhubung dalam seri mengikuti aturan yang berbeda dengan yang ada pada arus seri. Kita tahu dari rangkaian di atas bahwa total tegangan supply melintasi resistor sama dengan jumlah perbedaan potensial pada R1, R2 dan R3, VAB = VR1 + VR2 + VR3 = 9V. Dengan menggunakan Hukum Ohm, tegangan pada masing-masing resistor dapat dihitung sebagai Tegangan melintasi R1 = IR1 = 1mA x 1k = 1V Tegangan melintasi R2 = IR2 = 1mA x 2k = 2V Tegangan melintasi R3 = IR3 = 1mA x 6k = 6V memberikan tegangan total VAB dari 1V + 2V + 6V = 9V yang sama dengan nilai tegangan supply. Kemudian jumlah dari perbedaan potensial di resistor sama dengan total perbedaan potensial di seluruh kombinasi dan dalam contoh kita ini adalah 9V. Persamaan yang diberikan untuk menghitung tegangan total dalam rangkaian seri yang merupakan jumlah dari semua tegangan individu yang ditambahkan bersama diberikan sebagai VTotal = VR1 + VR2 + VR3 +….. VN Kemudian jaringan resistor seri juga dapat dianggap sebagai "pembagi tegangan" dan rangkaian resistor seri yang memiliki komponen resistif N akan memiliki tegangan N-berbeda di atasnya sambil mempertahankan arus yang sama. Dengan menggunakan Hukum Ohm, baik tegangan, arus atau resistansi dari rangkaian seri yang terhubung dapat dengan mudah ditemukan dan resistor dari rangkaian seri dapat dipertukarkan tanpa mempengaruhi resistansi total, arus, atau daya ke masing-masing resistor. Contoh Resistor dalam Seri Dengan menggunakan Hukum Ohm, hitung resistansi seri yang setara, arus seri, penurunan tegangan, dan daya untuk setiap resistor di resistor berikut di rangkaian seri. Semua data dapat ditemukan dengan menggunakan Hukum Ohm, dan untuk membuat perhitungan sedikit lebih mudah, kami dapat menyajikan data ini dalam bentuk tabel. Resistansi Arus Tegangan Daya R!1 = 10 I1 = 200mA V1 = 2V P1 = R2 = 20 I2 = 200mA V2 = 4V P2 = R3 = 30 I3 = 200mA V3 = 6V P3 = RT = 60 IT = 200mA VS = 12V PT = Kemudian untuk rangkaian di atas, RT = 60, IT = 200mA, VS = 12V dan PT = Rangkaian Pembagi Tegangan Kita dapat melihat dari contoh di atas, bahwa meskipun tegangan supply diberikan sebagai 12 volt, tegangan yang berbeda, atau penurunan tegangan, muncul di setiap resistor dalam jaringan seri. Dengan menghubungkan resistor secara seri seperti diatas pada satu supply DC memiliki satu keuntungan besar, yaitu tegangan yang berbeda muncul di setiap resistor yang menghasilkan rangkaian yang sangat berguna yang disebut Jaringan Pembagi Tegangan. Rangkaian sederhana ini membagi tegangan supply secara proporsional di setiap resistor dalam rantai seri dengan jumlah penurunan tegangan yang ditentukan oleh nilai resistor dan seperti yang kita ketahui sekarang, arus melalui rangkaian resistor seri adalah umum untuk semua resistor. Jadi resistansi yang lebih besar akan memiliki drop tegangan yang lebih besar di atasnya, sedangkan resistansi yang lebih kecil akan memiliki drop tegangan yang lebih kecil di atasnya. Rangkaian resistif seri yang ditunjukkan di atas membentuk jaringan pembagi tegangan sederhana yaitu tiga tegangan 2V, 4V dan 6V dihasilkan dari supply 12V tunggal. Hukum Kirchoff 2 -Tegangan menyatakan bahwa "tegangan supply dalam rangkaian tertutup sama dengan jumlah semua penurunan tegangan I*R di sekitar rangkaian" dan ini dapat digunakan untuk efek yang baik. Aturan Pembagi Tegangan, memungkinkan kita untuk menggunakan efek resistansi proporsionalitas untuk menghitung beda potensial pada setiap resistansi terlepas dari arus yang mengalir melalui rangkaian seri. "rangkaian pembagi tegangan" tipikal ditunjukkan di bawah ini. Jaringan Pembagi Tegangan Rangkaian yang ditampilkan hanya terdiri dari dua resistor, R1 dan R2 yang dihubungkan bersama secara seri pada tegangan supply Vin. Satu sisi tegangan catu daya terhubung ke resistor, R1, dan output tegangan, Vout diambil dari resistor R2. Nilai tegangan output ini diberikan oleh rumus yang sesuai. Jika lebih banyak resistor dihubungkan secara seri ke rangkaian, maka tegangan yang berbeda akan muncul di masing-masing resistor secara bergantian berkaitan dengan nilai resistansi masing-masing R Hukum Ohm I*R yang memberikan titik tegangan yang berbeda tetapi lebih kecil dari satu supply tunggal. Jadi jika kita memiliki tiga atau lebih resistansi dalam rantai seri, kita masih bisa menggunakan rumus pembagi potensial yang sudah kita kenal untuk menemukan penurunan tegangan di masing-masing. Pertimbangkan rangkaian di bawah ini. Rangkaian pembagi potensial di atas menunjukkan empat resistansi dihubungkan bersama adalah seri. Penurunan tegangan melintasi titik A dan B dapat dihitung menggunakan rumus pembagi potensial sebagai berikut Kita juga dapat menerapkan ide yang sama untuk sekelompok resistor dalam rantai seri. Sebagai contoh jika kita ingin menemukan penurunan tegangan di kedua R2 dan R3 bersama-sama kita akan mengganti nilainya di pembilang atas rumus dan dalam hal ini jawaban yang dihasilkan akan memberi kita 5 volt 2V + 3V. Dalam contoh yang sangat sederhana ini tegangan bekerja dengan sangat rapi sebagai drop tegangan resistor sebanding dengan resistansi total, dan sebagai resistansi total, RT dalam contoh ini adalah sama dengan 100 atau 100%, resistor R1 adalah 10% dari RT, sehingga 10% dari sumber tegangan VS akan muncul di atasnya, 20% dari VS di seluruh resistor R2, 30% di seluruh resistor R3, dan 40% dari tegangan supply VS di resistor R4. Penerapan hukum Kirchoff 2 - tegangan KVL di sekitar jalur loop tertutup menegaskan hal ini. Sekarang mari kita anggap kita ingin menggunakan dua rangkaian pembagi potensial resistor di atas untuk menghasilkan tegangan yang lebih kecil dari tegangan supply yang lebih besar untuk memberi daya pada rangkaian elektronik eksternal. Misalkan kita memiliki supply 12V DC dan rangkaian kita yang memiliki impedansi 50 hanya membutuhkan supply 6V, setengah dari tegangan. Menghubungkan dua resistor bernilai sama, masing-masing katakanlah 50, bersama-sama sebagai jaringan pembagi potensial di 12V akan melakukan ini dengan sangat baik sampai kita menghubungkan rangkaian beban ke jaringan. Hal ini karena efek pembebanan dari resistor RL terhubung secara paralel di R2 mengubah rasio kedua resistansi seri mengubah tegangan drop mereka dan ini ditunjukkan di bawah ini. Contoh Resistor dalam Seri Hitung turun tegangan di X dan Y a Tanpa RL terhubung b Dengan RL terhubung Seperti yang Anda lihat dari atas, tegangan output Vout tanpa beban resistor terhubung memberi kita tegangan output yang diperlukan dari 6V tapi tegangan output yang sama pada Vout saat beban terhubung turun hanya 4V, Resistor terhubung Paralel. Kemudian kita dapat melihat bahwa jaringan pembagi tegangan yang dimuat mengubah tegangan output-nya sebagai akibat dari efek pembebanan ini, karena tegangan output Vout ditentukan oleh rasio R1 sampai R2. Namun, sebagai resistansi beban, R L meningkat menuju tak terhingga ∞ memuat ini efek mengurangi dan rasio tegangan Vout/Vs menjadi tidak terpengaruh oleh penambahan beban pada output. Maka semakin tinggi impedansi beban semakin sedikit efek pembebanan pada output. Efek mengurangi level sinyal atau tegangan dikenal sebagai Atenuasi pelemahan sehingga harus berhati-hati saat menggunakan jaringan pembagi tegangan. Efek pemuatan ini dapat dikompensasi dengan menggunakan potensiometer alih-alih resistor nilai tetap dan disesuaikan. Metode ini juga mengkompensasi pembagi potensial untuk toleransi yang bervariasi dalam konstruksi resistor. Sebuah variabel resistor, potensiometer atau pot seperti yang lebih umum disebut, adalah contoh yang baik dari pembagi tegangan multi-resistor dalam satu paket karena dapat dianggap sebagai ribuan mini-resistor secara seri. Di sini tegangan tetap diterapkan di dua koneksi tetap luar dan tegangan output variabel diambil dari terminal penghapus. Pot multi-putaran memungkinkan kontrol tegangan output yang lebih akurat. Rangkaian Pembagi Tegangan adalah cara paling sederhana menghasilkan tegangan yang lebih rendah dari tegangan yang lebih tinggi, dan mekanisme operasi dasar dari potensiometer. Selain digunakan untuk menghitung tegangan supply yang lebih rendah, rumus pembagi tegangan juga dapat digunakan dalam analisis rangkaian resistif yang lebih kompleks yang mengandung cabang seri dan paralel. Rumus pembagi tegangan atau potensial dapat digunakan untuk menentukan penurunan tegangan di sekitar jaringan DC tertutup atau sebagai bagian dari berbagai hukum analisis rangkaian seperti teorema Kirchhoff atau teorema Thevenin. Aplikasi Resistor Seri Kita telah melihat bahwa Resistor dalam Seri dapat digunakan untuk menghasilkan tegangan yang berbeda di seluruh mereka sendiri dan jenis jaringan resistor ini sangat berguna untuk menghasilkan jaringan pembagi tegangan. Jika kita mengganti salah satu resistor dalam rangkaian pembagi tegangan di atas dengan Sensor seperti Termistor, Resistor bergantung cahaya LDR atau bahkan Sakelar, kita dapat mengubah kuantitas analog yang dirasa menjadi sinyal listrik yang cocok yang mampu menjadi diukur. Sebagai contoh, rangkaian Termistor berikut memiliki resistansi 10K pada 25°C dan resistansi 100 pada 100°C. Hitung tegangan output Vout untuk kedua suhu. Rangkaian Termistor Pada 25°C Pada 100°C Jadi dengan mengubah tetap 1K resistor, R2 dalam rangkaian sederhana kami di atas untuk variabel resistor atau potensiometer, tegangan output set point tertentu dapat diperoleh pada rentang temperatur yang lebih luas. Ringkasan Resistor dalam Seri Jadi untuk meringkas. Ketika dua atau lebih resistor dihubungkan bersama ujung ke ujung dalam satu cabang tunggal, resistor dikatakan dihubungkan bersama secara seri. Resistor dalam Seri membawa arus yang sama, tetapi penurunan tegangan pada mereka tidak sama dengan nilai resistansi masing-masing akan menciptakan penurunan tegangan yang berbeda di setiap resistor sebagaimana ditentukan oleh Hukum Ohm V = I*R . Kemudian rangkaian seri adalah pembagi tegangan. Dalam sebuah jaringan resistor seri resistor individu menambahkan bersama-sama untuk memberikan resistansi setara, RT dari kombinasi seri. Resistor dalam rangkaian seri dapat dipertukarkan tanpa memengaruhi resistansi total, arus, atau daya untuk setiap resistor atau rangkaian. Dalam tutorial berikutnya tentang Resistor, kita akan melihat menghubungkan resistor bersama secara paralel dan menunjukkan bahwa resistansi total adalah jumlah resiprokal dari semua resistor yang ditambahkan bersama-sama dan bahwa tegangan umum untuk Rangkaian Resistor Paralel.
Apa itu resistor? Resistor adalah komponen yang berfungsi mengurangi arus listrik yang mengalir atau disebut juga sebagai hambatan. Analogi dari sistem kerja resistor dan arus listrik adalah seperti aliran air pada pipa, semisal pipa memiliki hambatan yang besar maka air yang mengalir kecil sedangkan saat hambatan kecil air yang mengalir besar. Resistor sendiri adalah komponen elektronika yang sering kita jumpai dalam rangkaian, secara umum komponen resistor umumnya disusun menjadi rangkaian seri dan paralel. Lalu apa itu seri dan apa itu paralel? Rangkain seri adalah rangkaian yang komponenya tersusun secara berderet atau seperti barisan, sedangkan rangkaian paralel adalah adalah komponen yang tersusun secara berjajar. Anda ingin belajar mengenai rangkaian seri dan paralel? Yap tepat sekali jika Anda membaca artikel ini, karena artikel ini akan mengupas materi mengenai rangkaian seri, rangkaian paralel, dan contoh soal serta pembahasannya. Menghitung resistor rangkaian seri Kata seri memiliki sinonim berderet atau barisan, jadi resistor yang dirangkai seri adalah resistor yang disusun secara berderet. Pada rangkaian seri hanya mempunyai satu jalur yang dipakai untuk mengalirkan arus listrik, jadi apabila terjadi kerusakan pada salah satu jalur makan semua jalur berikutnya akan ikut terpengaruh. Resistor yang disusun seri mempunyai manfaat untuk memperbesar nilai hambatan pada suatu rangkaian. Rangkaian seri memiliki besar hambatan pengganti setara dengan jumlah nilai dari tiap hambatan yang digunakan pada sebuah rangkaian. Pada rangkaian seri tiap ujung-ujung resistornya mempunyai tegangan pengganti yang sama dengan jumlah tegangan pada semua rangkaian. Dan kuat arus pada rangkaian seri sama dengan kuat arus yang melewati masing-masing hambatan pada rangkaian. Sifat-sifat Rangkaian Seri Tiap komponen pada rangkaian aliran arus sama besarnya. Tegangan sumber sama dengan jumlah tegangan yang ada pada seluruh bagian komponen pada rangkaian. Tahanan total diperoleh dari jumlah semua tahanan pada tiap bagian rangkaian. Rumus Rangkaian Seri Untuk melakukan perhitungan pada rangkaian seri sangatlah mudah, karena tinggal melakukan penjumlahan nilai-nilai resistor saat digabungkan. Rumus resistor yang dirangkai secara seri bisa dihitung menggunakan rumus Rtotal = R1 + R2 + R3 + …….. + Rn Vsumber = V1 + V2 + V3 + …. + Vn ITotal = I1 = I2 = I3 = …. = In Rumus diatas adalah rumus yang biasa digunakan untuk menghitung resistor yang tersusun secara seri. Cara menghitung resistor yang disusun secara seri hanya dengan menjumlahkan nilai dari masing-masing resistor yang tersusun secara berderet. Cara Menghitung Resistor Paralel Cara Menghitung Resistor Paralel Rangkaian paralel adalah resistor yang tersusun secara sejajar, biasanya rangkaian paralel disusun secara bercabang. Rangkaian yang disusun secara paralel biasanya digunakan untuk mengurangi arus yang lewat. Komponen yang dibuat secara paralel akan bercabang, jika terjadi kerusakan di salah satu komponennya makan komponen lain akan tetap berjalan karena tidak terpengaruh oleh komponen lain yang rusak. Rangkaian yang disusun secara paralel memiliki tegangan yang sama pada setiap ujung resistornya, sedangkan kuat arusnya terbagi-bagi sesuai dengan nilai resistansi dari masing-masing hambatan. Sifat-sifat Rangkaian Paralel Komponen pada rangkaian memiliki aliran arus yang berbeda-beda, tergantung nilai resistor pada tiap cabangnya. Arus total sama dengan jumlah arus dari seluruh rangkaian. Tegangan pada tiap cabangnya sama dengan tegangan total atau tegangan sumber. Tahanan total diperoleh dari jumlah kebalikan dari semua resistor yang terdapat pada setiap cabang di rangkaian. Rumus Rangkaian Paralel Untuk melakukan perhitungan pada rangkaian paralel tinggal menggunakan rumus resistor yang dirangkai secara paralel sebagai berikut Vsumber = V1 = V2 = V3 = …. = Vn ITotal = I1 + I2 + I3 + …. + In Rumus diatas adalah rumus yang biasa digunakan untuk menghitung resistor yang tersusun secara paralel. Cara menghitung resistor yang disusun secara paralel adalah dengan memasukan nilai dari masing-masing resistor kedalam rumusnya. Menghitung hambatan rangkaian tentunya berbeda dari membaca nilai resistor. Untuk contoh soal akan dibahas pada sub bab berikut. Note Hal yang perlu diingat bahwa Nilai Hambatan Resistor Ohm akan bertambah jika menggunakan Rangkaian Seri Resistor sedangkan Nilai Hambatan Resistor Ohm akan berkurang jika menggunakan Rangkaian Paralel Resistor. Contoh Soal Perhitungan Resistor 1. Seorang teknisi akan membuat rangkaian yang membutuhkan nilai 4k, akan tetapi stok resistor di pasaran dengan nilai tersebut sedang kosong. Maka berapa nilai resistor pengganti 4k yang harus dipilih teknisi untuk membuatnya dalam bentuk rangkaian seri? Pembahasan Untuk memperoleh nilai 4k banyak cara yang bisa ditempuh, pertama adalah dengan menyusun empat buah resistor dengan nilai 1k seperti berikut. Rtotal = 4k R1 + R2 + R3 + R4 = 4k 1k + 1k + 1k + 1k = 4k Atau bisa juga dengan cara kedua yaitu menyusun dua buah reistor bernilai 2k. Jadi jika dua buah resistor disusun seri maka nilai resistor totalnya 2k + 2k = 4k 2. Terdapat dua buah resistor yang dirangkaian secara paralel dengan nilai masing-masing resistor adalah 220 dan 330, maka berapakah nilai dari hambatan totalnya? Pembahasan Diketahui R1 = 220 R2 = 330 Ditanya Rtotal….? Jawab Rtotal = = 132 3. Aldi mempunyai 4 buah resistor, dia berencana untuk merangkainya menjadi rangkaian seri. Masing-masing resistor milik Aldi adalah bernilai 1k, 47, 100, dan 560. Maka berapa total nilai resistor Aldi saat disusun secara seri? Pembahasan Diketahui R1 =1K = 1000 R2 = 47 R3 = 100 R4 = 560 Ditanya Rtotal….? Jawab Rtotal = R1 + R2 + R3 + R4 Rtotal = 1000 + 47 + 100 + 560 = 1707 4. Suatu rangkaian mempunyai tiga buah resistor yang tersusun secara paralel, rangkaian tersebut dialiri arus sebesar 2A, maka tentukanlah besar tegangan pada tiap resistor jika masing-masing memiliki hambatan 2, 4 dan 6. Pembahasan Diketahui R1 = 2 R2 = 4 R3 = 6 Itotal = 2A Ditanya V….? Jawab Karena rangkaian ini tersusun secara paralel, maka nilai tegangan dari masing-masing resistor adalah sama, untuk menghitung tegangan menggunakan rumus V = I x Rtotal V = 2 x 1,09 = 2,18 V 5. Dua buah resistor masing-masing 10 dan 2 dirangkai secara seri kemudian dihubungkan secara paralel dengan dua buah resistor lainnya yang disusun seri. Kedua resistor tersebut masing-masing 8 dan 4. Tentukanlah nilai hambatan total atau hambatan pengganti pada rangkaian tersebut? Pembahasan Diketahui R1 = 10 R2 = 2 R3 = 8 R4 = 4A Ditanya Rtotal….? Jawab Menghitung rangkaian seri pertama, RS1 = R1 + R2 RS1 = 10 + 2 RS1 = 12 Menghitung rangkaian seri kedua RS2 = R3 + R4 RS2 = 8 + 4 RS2 = 12 Menghitung hambatan total R paralel Rtotal = = 6 Jadi, besar hambatan pengganti pada susunan itu adalah 6. 6. Dua buah resistor dirangkai seri dan dihubungkan dengan sumber tegangan 12 volt. Jika nilai masing-masing resistor tersebut adalah 10 dan 2, maka tentukanlah kuat arus yang mengalir dalam rangkaian tersebut. Diketahui R1 = 10 R2 = 2 V = 12V Ditanya I….? Jawab RS1 = R1 + R2 RS1 = 10 + 2 RS1 = 12 Karena rangkaian ini terhubung dalam seri, maka nilai kuat arus yang mengalir pada seluruh rangkaian adalah sama. Untuk mencari nilai kuat arus bisa menggunakan rumus I = V/Rs I = 12/12 I = 1 A. Jadi arus yang mengalir pada rangkaian itu adalah 0,83 A. 7. Alisha mempunyai 2 buah resistor, dia berencana untuk merangkainya menjadi rangkaian seri. Masing-masing resistor milik Alisha adalah bernilai 2k dan 4k7 Maka berapa total nilai resistor Aldi saat disusun secara seri? Pembahasan Diketahui R1 = 2K = 2000 R2 = 4K7 = 4700 Ditanya Rtotal….? Jawab Rtotal = R1 + R2 Rtotal = 2000 + 4700 = 5700 8. Tiga buah resistor dengan besar hambatan masing-masing 8, 6, dan 4 dirangkai secara paralel. Tentukan besar resistansi total yang dihasilkan ketiga resistor tersebut. Diketahui R1 = 8 R2 = 6 R3 = 4 Ditanya Rtotal….? Jawab Jadi, besar hambatan pengganti pada susunan itu adalah 1,84 . Demikianlah cara mudah menghitung resistor baik untuk rangkaian seri maupun paralel. Kesimpulannya, terdapat 3 langkah dalam mencari total hambatan pada suatu rangkaian tentukan rumus sesuai rangkaian, hitung dan dapatkan hasilnya. Semoga bermanfaat.